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Conductance distribution in doped and defected graphene nanoribbons
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Electronic transport at the um length scale is theoretically investigated for N-doped and vacancy damaged
graphene nanoribbons. In these systems, localization due to scattering is strongly energy dependent, and this
fact leads to the appearance of conductance quasigaps in the spectral region of the resonance states. Conduc-
tance fluctuations are very large in the quasigap regions and increase linearly with the system size. The single
parameters scaling hypothesis is not verified for energies in a zone including the charge neutrality point while

it is valid for energies away from this zone.
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I. INTRODUCTION

Graphene can be considered a material with potentially
exceptional electronic properties like high room temperature
mobility and ballistic conduction for submicroscale lengths,
which, in view of the post-Si electronic applications, are hin-
dered by the presence of a minimum of the conductivity.
Electron confinement, realized by means of nanostructures’
or strain engineering? (i.e., through geometric confinement),
could overcome these difficulties. In this sense, the most
promising systems for graphene-based nanoelectronics are
the graphene nanoribbons (GNRs), which have been already
synthesized by means of different pattering techniques.>* In
these cases, the control of the electronic properties is inher-
ently related to the accurate manipulation of the nanostruc-
ture edges. However, also the chemical modification of the
system bulk zone, e.g., using substitutional impurities, has
been proposed to overcome the minimum of conductivity
problem.> This prospect also meets the more basic studies
of the disorder effect on graphene-based systems,’ which is a
central problem in graphene due to production faults, surface
exposition and the influence of the substrate (strongly
bounded to the GNRs in the case of flakes grown on SiC).®

It is highly likely that the undergoing development of
graphene nanostructures will soon make possible a system-
atic experimental study of quantum transport fundamentals
in low-dimensional disordered systems, which nowadays
have been mainly the subject of theoretical investigations. In
a recent work, the validity of the single parameter scaling
(SPS) hypothesis, i.e., the universal dependence of the con-
ductance distribution function on the localization length &,
has been critically addressed in strongly disordered GNRs in
the framework of the Anderson model.® However, these find-
ings have to be confirmed in more realistic descriptions of
graphene-based conductors, since the Anderson model is a
rather idealized realization of the real disorder (or the real
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chemical modification) that could be approximately valid in
the case of a huge density of local scattering centers.'?

In this work, we have extensively investigated, by means
of ab initio calibrated models and nonequilibrium Green’s
function (NEFG) techniques, the effects of the inclusion of
controlled densities of local scattering centers, i.e., vacancies
(V’s) and N impurities, in the conductance distribution func-
tion of large (up to ~1 wm) Armchair GNRs (AGNRs).
Simulations have been performed for large replicas of
equivalent systems and results represent statistical averages
over conductance-related properties. The computational out-
comes reveal that the validity of the single parameters scal-
ing hypothesis is not universal, but rather depends on the
vicinity of the energy position with respect to the charge
neutrality level of the studied systems. In addition, charac-
teristics of disorder induced (pseudo)gap issues are also ad-
dressed.

The article is organized in the following way: Sec. II
gives a brief overview of the computational methodology,
Sec. III presents statistical analyses of the conductance in
doped and defected GNRs, and Sec. IV presents density of
states criteria for the evaluation of the SPS hypothesis, while
in Sec. V we discuss our results.

II. METHODOLOGY AND CALIBRATION

AGNRs are classified using the convention of Ref. 1, i.e.,
with the integers N, indicating respectively the number of
dimer lines across the ribbon width. The system length L is
also indicated by an integer which is the number of atoms
belonging to the dimer lines (L e [500,4000] in this work,
while the maximum length considered corresponds to about
0.84 um). Consistently with graphene’s electronic band-
structure, we assume that only p, orbitals contribute to the
transport mechanism along the GNR. For efficiency’s sake,
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we neglect the contributions of the hopping term between p,
orbitals in the second neighbor shell and above (nearest-
neighbor tight-binding approximation). Ab initio calculations
have been used in order to calibrate the Hamiltonian matrix
elements in correspondence with local or extended alter-
ations of the periodicity: i.e., impurities,!" defects,!®!? and
ribbon edges.!

In the case of Nitrogen impurities and similarly to the
case of Boron discussed in Ref. 6, the calibration of the
Hamiltonian matrix elements corresponding to atomic posi-
tions near the impurity implies a significant modification of
the diagonal elements only. The extension (about 1 nm) of
the resulting scattering potential is larger than the 10th
neighbor shell distance with respect to the impurity site. Us-
ing a different AB INITIO code'® with an equivalent basis set,
we have verified that the properties of the scattering potential
are similar to that reported in Ref. 11, considering the case of
a graphene sheet.

On the other hand, the simplest and mostly used
method”!*13 to include a vacancy in a given GNR site i is
just by removing the site from the model, switching to zero
the related hopping 7;; terms or, equivalently switching to
infinite the related on site term ;. The corresponding mode
(also called zero energy mode) has a series of characteristics
due to the graphene bipartite lattice which have been exhaus-
tively studied in Ref. 7. A particular consequence of the sym-
metry of the zero mode should be an on/off switching of the
low bias conductance in contacted graphene quantum dots
depending on the contact’s location.'? Ab initio calculations
have excluded such a behavior since states around the charge
neutrality points do not show zero-energy mode symmetries.
Moreover, opposite to the impurity case and due to the bond
reconstructions, the vacancy presence significantly alters also
the off-diagonal sector of the Fock matrix projected on the p,
orbitals. As a consequence, in order to obtain a reliable and
effective calibration of the V-type defect in a nearest-
neighbor tight-binding Hamiltonian, the on-site and hopping
terms relative to the site occupied by the defects has been
tuned in order to obtain states around the charge neutrality
point which reproduce the correct symmetries (and the cor-
rect conductance features including the lacking of the cited
on/off switch) of the ab initio calculations.'> The tuned val-
ues are g;=10 eV and #;;=1.9 eV (to be compared to the 2.7
eV values of the perfect lattice).

H passivation of dangling bonds at the GNR edges is
included in the Hamiltonian following the calibration, based
on ab initio calculations, reported in Ref. 1, i.e., modifying
the hopping integral of C—C bonds at the edge. This correc-
tion leads to the appearance of a small gap at the charge
neutrality point for GNRs with N,=3 Xn+2, where n is an
integer number. These GNRs are otherwise perfectly metallic
in the approximation considered.

A two-terminal device geometry is considered throughout
the article where the randomly doped or defected region cor-
responds to the whole active device’s part. The key quantity
calculated here by means of optimized numerical techniques’
is the zero-bias/temperature conductance g(E)=(2¢%/h)T(E)
at energy E (which in the following will be reported in 2¢/h
units), where T is the transmission coefficient within the
Landauer approach. The latter can be calculated using the
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NEGF formalism as T=TrI',GI'3yG'], where G=(E*I-H
—-3,-3p) is the Green’s function of the system, I is the
identity operator, %;,% are the self-energies including the
effect of scattering due to the left (L) and right (R) contacts,
and I'; z=i(3, z—2] z) are the contact spectral functions.
Semi-infinite contacts are considered in this work with self-
energies > =7g,7, where g, is the surface Green’s function
of the respective lead and 7 is the conductor-contact
interaction.'® Contacts are of the same width N, as the con-
ductor without defect or impurity inclusions.

III. STATISTICAL ANALYSIS OF THE CONDUCTANCE IN
DOPED AND DEFECTED AGNRS

The conductance energy dependence of a disordered GNR
due to a random inclusion of defects or impurities shows
significant alteration with respect to that of an ideal system.
Indeed, in correspondence to the plateaus of the ideal con-
ductance curve, a strongly fluctuating conductance has been
calculated for disordered systems, where peaks eventually
reach the plateau levels, while the electron-hole symmetry of
the spectrum is completely broken.'® Of course, the spectrum
significantly changes with the given disorder realization even
when we fix the system’s size and the density of scattering
centers. In order to correlate systematically the conductance
features to the disorder realization, average conductance has
been calculated in a large number of statistically equivalent
replicas of the same system (i.e., same size and impurity
density) in the case of B-doped GNRs.% In the latter work, 1
eV large mobility gap in the average conductance spectrum
have been estimated, and this evidence should indicate that
chemically doped GNRs could solve the problem related to
the conductivity minimum of graphene-based devices. How-
ever, in the practical use of multiple electronic devices in an
integrated system, an equivalent behavior of the single de-
vice is required within a given tolerance window. As a con-
sequence, the variance of the conductance could be an addi-
tionally important parameter to be calculated in these
statistical analyses of disordered systems in view of nano-
electronic applications. Moreover, a complete statistical
study, as we will see, could be interesting with respect to the
fundamentals of theoretical and experimental research of dis-
ordered and low dimensional systems.

Average conductance and the variance of the logarithm of
the zero temperature conductance

o?=((In g)*) - (In g)* (1)

are shown in Fig. 1 as functions of the energy for a 47-
AGNR doped with a 0.2% density of N atoms and for sys-
tems with increasing length L, from L=500 (~0.1 wm) to
L=4000 (~0.8 wm). Natural logarithms are used in Eq. (1)
and in other expressions in this work. In doped systems,
significant (nonsymmetric) decreases in the average conduc-
tance with respect to the pure system can be observed in
particular spectral regions (note that the charge neutrality
points are aligned at E=0 for both doped and pure systems).
In particular, in the energy region near the single impurity
resonance states (i.e., for energies near the electron edge E
~0.25 eV of the first plateau of the conductance for the pure
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FIG. 1. Average conductance (g) (a) and conductance fluctua-
tions o2 (b) as a function of the energy E, for an N doped N,
=47-AGNR of different lengths: L=500 (dashes and dots), 1000
(solid lines), 2000 (dots), and 4000 (dashes). The lengths in um are
also reported. Plotted values represent statistical averages over
more than 500 equivalent replicas of the system. Charge neutrality
points of pure and doped systems are aligned at E=0 in the figure.

system) a quasigap appears also for the smaller systems. This
quasigap extends asymmetrically in the electron band (E
>0) beyond this region for larger systems. Equivalent be-
havior has been reported in Ref. 6 for the case of B-doped
GNRs apart of course the different location of the quasigap
in the spectrum. Our numerical analysis has established that
these systems are in the localized regime for energies within
the quasigap: i.e., with a good confidence the average zero
temperature resistance r(E)=g(E)~" depends exponentially
on L, therefore,

(In r(E))=2L/&E) + ¢, (2)

where ¢ is a small constant that does not depend on E and
&(E) is the energy dependent localization length. In particu-
lar, in the studied systems the transition from the weak lo-
calization regime [ L<&/E)] to the strong localization re-
gime [L> &(E)] depends on: the value of the energy, the type
of scattering centers (impurity or vacancy) and the density of
scatter centers. As an example, the interval of the &(E) values
measured in a number of dimer lines is &(E) €[232,2954]
for the data shown in Fig. 1, and generally the smaller values
of &(E) are obtained for energies corresponding to the con-
ductance dips. These dips are characterized by large values
of the conductance fluctuation [compare Figs. 1(a) and 1(b)].
In particular, the variance [Eq. (1)] has a large peak in the
energy region of the resonance states. In general, dips of the
average conductance are related to peaks of the variance,

PHYSICAL REVIEW B 80, 195413 (2009)

254 0.21 um
------ 042um1
204 ----0.84 ym!

=

350
300 i

250 (Y
200 , :

« ]
© 1504

0.5 1.0

FIG. 2. Average conductance (g) (a) and conductance fluctua-
tions o2 (b) as a function of the energy E, for a V-damaged N,
=47 AGNR of different lengths: L=500 (dashes and dots), 1000
(solid lines), 2000 (dots), and 4000 (dashes). The lengths in wm are
also reported. Plotted values represent statistical averages over
more of 500 equivalent replicas of the system. Charge neutrality
points of pure and defected systems are aligned at E=0 in the
figure.

apart for energies near the small gap at the charge neutrality
point! where conductance fluctuations are relatively small.

A qualitatively similar behavior is shown by the
V-damaged systems (see Fig. 2 &E) €[57,3414] in this
case). However, here, a larger pseudogap appears in the
negative energies (hole band) region also for the smaller sys-
tems due to the stronger backscattering of the defects with
respect to the impurities. This pseudogap is not centered
around E=0 as we should expect for an idealized V descrip-
tion (i.e., an infinite &; scattering center).® Indeed, as we have
noted, ab initio calculations have evidenced that due to the
bond’s reconstruction, Vs in graphene-based systems have
not exactly the behavior of zero energy modes but an
impurity-like behavior. Again, due to the stronger back-
scattering in correspondence to the pseudogap the variance
assumes relatively larger values in defected systems with re-
spect of the doped ones [compare Figs. 1(b) and 2(b)].

Our statistical analysis shows a linear dependence of
o(E,L)? on the system length L for fixed values of the sys-
tem quasi-Fermi energy E. A similar finding, expected in
pure one-dimensional systems, was previously recovered in
quasi-one-dimensional GNRs (Ref. 9) where the disorder
was realized in the framework of the Anderson model.!” A
peculiar aspect of the GNRs conductance distribution is the
failure of the SPS hypothesis when strong local fluctuations
of the on-site potential are the source of backscattering.” SPS
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FIG. 3. (Color online) Conductance fluctuations o2 as a function
of the average of the conductance natural logarithm (In(g)) for dif-
ferent N-doped N,=45 AGNRs. Each point represents a statistical
average over more of 500 equivalent replicas of the system. The
systems differ for: scatter center density (0.2%, 0.4% cases), Fermi
energy E, which belongs to the interval [-1,1] and length L
=500,1000,1500,2000,4000. Red triangles evidence points for en-
ergies E in the intervals [—-1,-0.5] and [0.5,1].

states that the conductance distribution is a universal func-
tion of & and, as a consequence, also ¢” depends only on the
localization length. In Figs. 3-5 o2 is shown (black squares)
as a function of {In g(E)) [and due to the validity of Eq. (2)
implicitly as a function of 2L/ &]: for an N-doped 45-AGNR
(Fig. 3, &(E) €[274,2754]), an N-doped 47-AGNR (Fig. 4,
&(E) €[206,5355]), and a defected 47-AGNR (Fig. 5, &(E)
€ [44,3414]). Each point represents a statistical analysis on
more than 500 replicas of the systems. Conductance distri-
bution was evaluated in systems of different lengths in the
L=500-4000 (~0.1-~0.84 um) range and different impu-
rity (defect) densities (0.1%, 0.2%, and 0.4%). A total of
10,18 and 8 systems were stochastically analyzed for more
than 200 energy values in the range E € [-1,1] in order to
obtain the distributions shown in Figs. 3-5, respectively. A
larger dispersion of the variance can be observed in doped
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FIG. 4. (Color online) Conductance fluctuations o2 as a function
of the average of the conductance natural logarithm (In(g)) for dif-
ferent N-doped N,=47 AGNRs. Each point represents a statistical
average over more than 500 equivalent replicas of the system. The
systems differs for: scatter centers density (0.1%, 0.2% 0.4% cases),
Fermi energy E, which belongs to the interval [—1,1] and length
L=500,1000,1500,2000,3000,4000. Red triangles evidence
points for energies E in the intervals [-1,-0.5] and [0.5,1].
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FIG. 5. (Color online) Conductance fluctuations o2 as a function
of the average of the conductance natural logarithm (In(g)) for dif-
ferent V-damaged N,=47 AGNRs. Each point represents a statisti-
cal average over more than 500 equivalent replica of the system.
The systems differ for scatter centers density (0.2% 0.4% cases),
Fermi energy E, which belongs to the interval [—1,1], and length
L=500,1000,2000,4000. Red triangles evidence values for ener-
gies E in the intervals [-1,-0.5] and [0.5,1].

AGNRs (Fig. 4) when compared to defected AGNRs (Fig. 5)
and in semiconducting AGNRs (Fig. 3) when compared to
semimetal AGNRs (Fig. 4). In order to qualitatively catego-
rize these results, we note that small (g) small ¢ points are
related to energies near the conventional gap, while small (g)
large o points are related to the spectral region where local-
ization is caused by the interaction between electron and lo-
cal scatter centers.

If the SPS was verified for all the energies in the interval
considered (i.e., E€[-1,1] eV), we should expect that all
the points (apart from the statistical errors) should collapse in
a single line. Of course, in general, the results reported in
Figs. 3-5 do not support the SPS hypothesis, and this finding
seems in agreement with the similar results obtained in the
framework of the Anderson model.® However, this kind of
disorder realization is surely more realistic with respect to
that simulated by the Anderson model and differences be-
tween the two different disordered realizations should be ex-
pected. Indeed, a careful analysis of results on the conduc-
tance fluctuations shows that the SPS hypothesis is verified
in a rather large spectral region when disorder is due to de-
fects or impurities at the concentration levels here investi-
gated. This statement can be inferred looking at the red tri-
angles in Figs. 3-5, which evidence o*(E) for the same
systems, for energies in the following ranges: E € [-1 eV,
-0.5 eV] and E €[0.5 eV,1 eV]. For these energy ranges,
all the points clearly collapse in a single line irrespective to
the dopant or impurity density or the energy values (please
note that the number of points evidenced by triangles is ex-
actly equal to the remaining ones). As a consequence, the
SPS hypothesis seems to fail only near the charge neutrality
point (or more exactly near the first plateau of the conduc-
tance of the corresponding pure system).

IV. FAILURE AND VALIDITY OF THE SINGLE SCALING
PARAMETER HYPOTHESIS

The failure of the SPS hypothesis near E=0 can be ex-
plained according to density of states (DOS) based criteria
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reported in the recent numerical and analytical studies for
disordered systems, where disorder is realized in the frame-
work of model Hamiltonians.!3?! Indeed, according to the
DOS criterion, the SPS is essentially controlled by another
length scale [,(E) related to the DOS, which in the case of a
single (isolated) band has the following expression:

L(E) = sin[N(E)/Nyo ] ™" (3)

Here, the integrated DOS N(E) and the total density N, are
given by

E E
DOS(E)dE, N,,= f

E, bottom

1o,

N(E) = f DOS(E)dE,

Ehottom

(4)

and Ej oy, and E,,, are the band boundaries. The inequality
&(E)>1,(E) determines the region of the spectrum where the
SPS should be valid. This criterion explains our results if the
electron and hole bands of the GNRs are considered as two
separate bands (i.e., Epyy=—>, E,,=0 for the hole band,
and Ej,y, =0, E,,, =+ for the electron band). Here the cri-
terion seems correct and SPS appears to be verified in spec-
tral regions away from the first plateau of the conductance
due to the concomitant strong increases of &(E) and N(E) [or
the decrease of I,(E)], i.e., the failure of SPS near the charge
neutrality point is well categorized, as it was obtained for the
Anderson model in a two dimensional square lattice when
the energy belongs to the band tails.”’ In turn the results
reported in Ref. 9 (obtained in GNRs where disorder is simu-
lated again with the Anderson model) indicate a definitive
failure of SPS in the whole energy spectrum that cannot be
categorized by means of the DOS criterion. However, this
relative discrepancy between the results in the framework of
the Anderson model® and that here obtained with a realistic
disorder realization can be also understood considering the
strongly energy dependent localization features induced by
the random scattering related to impurities and vacancies,
while the random fluctuations of the on-site energy allow the
realization of a disordered system which is in the strong lo-
calization regime for the whole energy spectrum.

Anyhow, the present and the previous numerical results
on disordered systems demonstrate that quantitative valence
of the DOS criterion is critical for a generic (i.e., not strictly
one-dimensional, where its validity has been rigorously
proven)'® disordered system and it can simply be used for a
qualitative analysis of the results.
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V. DISCUSSION

This study evidences some experimentally verifiable fea-
tures of the conductance distributions in devices based on
doped or defected GNRs. The estimated quasigap, extending
well away from the resonance levels, breaks the electron-
hole symmetry. This finding is expected in a doped system
while for the defected one it seems also more intriguing and
merits particular dedicated experimental analysis. However,
the experimental work should not be limited to the average
conductance since conductance fluctuations also show im-
portant regularities when suitably analyzed. In particular, the
conductance distribution should be “characteristic” of the
particular GNR microstructural modification (black points in
Figs. 3-5) when conductance measurements are performed
in the low gate bias regime (SPS failure when E near the first
plateau of the conductance) while it tends to be a universal
function for quasi-Fermi energy E values away from this
region (SPS validity red points in Figs. 3-5). In principle,
conduction measurements could reproduce the condition
here assumed: (a) equivalent systems with the same length
can be investigated fixing the electrode distance (e.g., by
means of nanoprobing techniques) and changing the mea-
surement zone in the same long GNR, (b) the Fermi energy
can be tuned using an additional (gate) electrode, (c) Raman
measurements can be used to estimate the density of local
scattering centers,?!?? etc.

In view of the application to the quasigap control in
GNRs, the vacancy inclusion (which has some natural van-
tages in terms of material processing since Vs form by means
of ion bombardments on graphene)?' seems also more effi-
cient than doping (compare Figs. 1 and 2) and very diluted
controlled density can be sufficient to obtain a GNR device
with the desired current levels in the ON and OFF states.
However, the impact of the strong conductance fluctuations
for energies in the quasigap regions to the device perfor-
mance has to be critically addressed since they are not
present, as we have noted (see again Fig. 3), in the conven-
tional gap and could hinder the device functionality.

Finally, we would like to briefly comment the possible
dependence of the current results on the calibration used. A
different calibration, e.g., based on a different ab initio
scheme or applied to a model extension, may of course lead
to relative small quantitative changes in the outcomes of the
numerical analysis. However, we do not expect any possible
changes in the general aspects of the conductance features
that were presented here in disordered GNRs due to the pres-
ence of local scattering centers.
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